王钰言   副研究员

交叉创新研究部 光电智能技术

通信地址:北京市海淀区清华大学FIT楼1-402

Email:wangyuyan@tsinghua.edu.cn

 

 

教育背景

2010.09-2015.07 清华大学 材料科学与工程 博士

2006.09-2010.06 中南大学 材料科学与工程 学士

工作履历

2021.12至今  清华大学  副研究员

2020.11-2021.12  清华大学  助理研究员

2018.09-2019.06  德国慕尼黑工业大学  洪堡学者(Humboldt Research Fellow)

2017.03-2018.08  德国雷根斯堡大学  洪堡学者(Humboldt Research Fellow)

2015.07-2020.10  北京航空航天大学物理学院  助理教授

研究领域

(1)神经拟态自旋电子器件及类脑计算

(2)光电功能材料及人工智能光计算芯片

(3)二维磁、光、电信息功能器件及片上集成

研究概况

长期从事面向高速、高密度、低功耗信息存储与处理的新型信息功能材料与器件研究,主要研究方向包括:反铁磁自旋电子学材料与器件、神经拟态光电感存算一体器件、低维信息材料与器件的多物理场调控等。主持国家自然科学基金重大项目、面上项目和国家重点研发课题,参与新一代人工智能国家科技重大专项等,在Nature Nanotechnology,Nature Electronics,Nature Communications,Science Advances,Physical Review Letters,Advanced Materials等领域权威期刊发表论文60余篇,并获多项授权专利。

奖励与荣誉

国家优秀青年科学基金

德国洪堡学者Humboldt research fellowship

北京市科技新星

清华大学第二十届学术新秀

清华大学优秀博士论文一等奖

中国真空学会博士优秀论文奖

北京市/清华大学优秀毕业生

学术成果

主要论文成果:

[1] H. Huang, X. Liang, Y. Wang*, J. Tang*, Y. Li, Y. Du, W. Sun, J. Zhang, P. Yao, X. Mou, F. Xu, J. Zhang, Y. Lu, Z. Liu, J. Wang, Z. Jiang, R. Hu, Z. Wang, Q. Zhang, B. Gao, X. Bai, L. Fang, Q. Dai, H. Yin, H. Qian, H, Wu*. Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing. Nature Nanotechnology,DOI: 10.1038/s41565-024-01794-z.

[2] W. Zhu, J. Sun, Y. Wang*, Y. Li, H. Bai, Q. Wang, L. Han, Q. Zhang, H. Wu, C. Song*, F. Pan*. Room-Temperature Magneto-Photoresponse in All-2D Optoelectronic Devices for In-Sensor Vision Systems. Advanced Materials, 36, 2403624 (2024).

[3] Y. Zhang, H. Bai, L. Han, C. Chen, Y. Zhou, C. H. Back, F. Pan, Y. Wang,* C. Song*. Simultaneous High Charge-Spin Conversion Efficiency and Large Spin Diffusion Length in Altermagnetic RuO2. Advanced Functional Materials, 34, 2313332 (2024).

[4] W. Zhu, J. Sun, Y. Cheng, H. Bai, L. Han, Y. Wang,* C. Song,* Feng Pan*. Photoresponsive Two-Dimensional Magnetic Junctions for Reconfigurable In-Memory Sensing. ACS Nano, 18, 27009-27015 (2024).

[5] Y. Cheng, J. Zhang, T. Zhou, Y. Wang, Z. Xu, X. Yuan, L. Fang*. Photonic neuromorphic architecture for tens-of task lifelong learning. Light: Science & Applications, 13, 56 (2024).

[6] J. Sun, Z. Lin, X. Jia, H. Li, C. Song, F. Pan, L. Fang, J. Zhang*, Y. Wang*. High-performance 2D WS2 photodetector enhanced by charge-transfer doping through NH3 annealing. Materials Today Physics, 35, 101133 (2023).

[7] Z. Zhao, F. Dong, Y. Wang,* J. Sun, H. Ye, R. Wang, J. Zhang*. Growth of few-layer WTe2 by a salt-assisted double-tube chemical vapor deposition method with high infrared photosensitivity. Nanoscale, 15, 11955 (2023).

[8] Y. Wang*, T. Taniguchi, P. Lin, D. Zicchino, A. Nickl, J. Sahliger, C. Lai, C. Song, H. Wu, Q. Dai, C. H. Back*. Time-resolved detection of spin–orbit torque switching of magnetization and exchange bias. Nature Electronics, 5, 840-848 (2022).

[9] L. Han#, Y. Wang#, W. Zhu, R. Zhao, X. Chen, R. Su, Y. Zhou, H. Bai, Q. Wang, Y. You, C. Chen, S. Yan, T. Chen, Y. Wen, C. Song*, F. Pan*. Spin homojunction with high interfacial transparency for efficient spin-charge conversion. Science Advances, 8, eabq2742 (2022).

[10] J. Sun, X. Jia, Y. Wang*, J. Zhang*. Strain-tunable magnetic transition in few-layer 1T-VSe2. Applied Physics Letters, 121, 072402 (2022).

[11] Y. Wang*, M. M. Decker, T. N.G. Meier, X. Chen, C. Song, T. Grünbaum, W. Zhao, J. Zhang, L. Chen*, C. H. Back. Spin pumping during the antiferromagnetic-ferromagnetic phase transition of iron-rhodium. Nature Communications, 11, 275 (2020).

[12] J. Sun, Y. Wang*, S. Guo, B. Wan, L. Dong, Y. Gu, C. Song, C. Pan, Q. Zhang, L. Gu, F. Pan and J. Zhang*. Lateral 2D WSe2 p–n Homojunction Formed by Efficient Charge-Carrier-Type Modulation for High-Performance Optoelectronics. Advanced Materials, 32, 1906499 (2020).

[13] S. Guo, Y. Wang*, J. Zhang*. Realization of valley polarization in monolayer WS2 via 3d transition metal atom adsorption, Journal of Physics D: Applied Physics, 53, 384001 (2020).

[14] L. Dong, Y. Wang*, J. Sun, C. Pan, Q. Zhang, L. Gu, B. Wan, C. Song, F. Pan, C. Wang, Z. Tang, J. Zhang*. Facile Access to Shape-controlled Growth of WS2 Monolayer via Environment-Friendly Method, 2D Materials, 6, 015007 (2019).

[15] S. Guo, Y. Wang, C. Wang, Z. Tang, J. Zhang*. Large Spin Orbit Splitting in Conduction Band of Halogen (F, Cl, Br and I) Doped Monolayer WS2 with Spin-Orbit Coupling, Physical Review B, 96, 245305 (2017).

[16] Y. Y. Wang*, C. Song*, J. Y. Zhang, F. Pan. Spintronic materials and devices based on antiferromagnetic metals. (Review). Progress in Natural Science: Materials International, 27, 208–216 (2017).

[17] Y. Wang, X. Zhou, C. Song*, Y. Yan, S. Zhou, G. Wang, C. Chen, F. Zeng, F. Pan*. Electrical control of exchange spring in antiferromagnetic metals. Advanced Materials, 27, 3196 (2015).

[18] Y. Wang, C. Song*, G. Wang, J. Miao, F. Zeng, F. Pan*. Anti-ferromagnet controlled tunneling magnetoresistance. Advanced Functional Materials, 24, 6806 (2014).

[19] Y. Y. Wang, C. Song*, G. Y. Wang, F. Zeng, F. Pan*. Evidence for asymmetric rotation of spins in antiferromagnetic exchange-spring. New Journal of Physics, 16, 123032 (2014).

[20] Y. Y. Wang, C. Song*, B. Cui, G. Y. Wang, F. Zeng, F. Pan*, Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Physical Review Letters, 109, 137201 (2012).